Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.311
Filtrar
1.
Microb Cell Fact ; 23(1): 106, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600576

RESUMO

BACKGROUND: The textile industry has several negative impacts, mainly because it is based on a linear business model that depletes natural resources and produces excessive amounts of waste. Globally, about 75% of textile waste is disposed of in landfills and only 25% is reused or recycled, while less than 1% is recycled back into new garments. In this study, we explored the valorisation of cotton fabric waste from an apparel textile manufacturing company as valuable biomass to produce lactic acid, a versatile chemical building block. RESULTS: Post-industrial cotton patches were pre-treated with the aim of developing a methodology applicable to the industrial site involved. First, a mechanical shredding machine reduced the fabric into individual fibres of maximum 35 mm in length. Afterwards, an alkaline treatment was performed, using NaOH at different concentrations, including a 16% (w/v) NaOH enriched waste stream from the mercerisation of cotton fabrics. The combination of chemo-mechanical pre-treatment and enzymatic hydrolysis led to the maximum recovery yield of 90.46 ± 3.46%, corresponding to 74.96 ± 2.76 g/L of glucose released, which represents a novel valorisation of two different side products (NaOH enriched wastewater and cotton textile waste) of the textile industry. The Saccharomyces cerevisiae strain CEN.PK m850, engineered for redirecting the natural alcoholic fermentation towards a homolactic fermentation, was then used to valorise the glucose-enriched hydrolysate into lactic acid. Overall, the process produced 53.04 g/L ± 0.34 of L-lactic acid, with a yield of 82.7%, being the first example of second-generation biomass valorised with this yeast strain, to the best of our knowledge. Remarkably, the fermentation performances were comparable with the ones obtained in the control medium. CONCLUSION: This study validates the exploitation of cotton post-industrial waste as a possible feedstock for the production of commodity chemicals in microbial cell-based biorefineries. The presented strategy demonstrates the possibility of implementing a circular bioeconomy approach in manufacturing textile industries.


Assuntos
Resíduos Industriais , Saccharomyces cerevisiae , Fermentação , Ácido Láctico , Hidrólise , Hidróxido de Sódio , Têxteis , Glucose
2.
ACS Sens ; 9(4): 1809-1819, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38587867

RESUMO

While most of the research in graphene-based materials seeks high electroactive surface area and ion intercalation, here, we show an alternative electrochemical behavior that leverages graphene's potential in biosensing. We report a novel approach to fabricate graphene/polymer nanocomposites with near-record conductivity levels of 45 Ω sq-1 and enhanced biocompatibility. This is realized by laser processing of graphene oxide in a sandwich structure with a thin (100 µm) polyethylene terephthalate film on a textile substrate. Such hybrid materials exhibit high conductivity, low polarization, and stability. In addition, the nanocomposites are highly biocompatible, as evidenced by their low cytotoxicity and good skin adhesion. These results demonstrate the potential of graphene/polymer nanocomposites for smart clothing applications.


Assuntos
Grafite , Lasers , Têxteis , Grafite/química , Humanos , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Condutividade Elétrica , Polietilenotereftalatos/química , Animais , Materiais Biocompatíveis/química , Técnicas Biossensoriais/métodos
3.
ACS Appl Mater Interfaces ; 16(15): 19605-19614, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568178

RESUMO

Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Microfluídica , Glucose/análise , Monitorização Fisiológica , Têxteis , Técnicas Biossensoriais/métodos
4.
PLoS One ; 19(4): e0302037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625923

RESUMO

The tear strength of textiles is a crucial characteristic of product quality. However, during the laboratory testing of this indicator, factors such as equipment operation, human intervention, and test environment can significantly influence the results. Currently, there is a lack of traceable records for the influencing factors during the testing process, and effective classification of testing activities is not achieved. Therefore, this study proposes a state-awareness and classification approach for fabric tear performance testing based on multi-source data. A systematic design is employed for fabric tear performance testing activities, which can real-time monitor electrical parameters, operational environment, and operator behavior. The data are collected, preprocessed, and a Decision Tree Support Vector Machine (DTSVM) is utilized for classifying various working states, and introducing ten-fold cross-validation to enhance the performance of the classifier, forming a comprehensive awareness of the testing activities. Experimental results demonstrate that the system effectively perceives fabric tear performance testing processes, exhibiting high accuracy in the classification of different fabric testing states, surpassing 98.73%. The widespread application of this system contributes to continuous improvement in the workflow and traceability of fabric tear performance testing processes.


Assuntos
Máquina de Vetores de Suporte , Têxteis , Humanos , Eletricidade , Percepção
5.
Sci Rep ; 14(1): 7872, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570536

RESUMO

Conventional snap fasteners used in clothing are often used as electrical connectors in e-textile and wearable applications for signal transmission due to their wide availability and ease of use. Nonetheless, limited research exists on the validation of these fasteners, regarding the impact of contact-induced high-amplitude artefacts, especially under motion conditions. In this work, three types of fasteners were used as electromechanical connectors, establishing the interface between a regular sock and an acquisition device. The tested fasteners have different shapes and sizes, as well as have different mechanisms of attachment between the plug and receptacle counterparts. Experimental evaluation was performed under static conditions, slow walking, and rope jumping at a high cadence. The tests were also performed with a test mass of 140 g. Magnetic fasteners presented excellent electromechanical robustness under highly dynamic human movement with and without the additional mass. On the other hand, it was demonstrated that the Spring snap buttons (with a spring-based engaging mechanism) presented a sub-optimal performance under high motion and load conditions, followed by the Prong snap fasteners (without spring), which revealed a high susceptibility to artefacts. Overall, this work provides further evidence on the importance and reliability of clothing fasteners as electrical connectors in wearable systems.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Eletricidade , Condutividade Elétrica
6.
Exp Dermatol ; 33(4): e15081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628046

RESUMO

The close interaction between skin and clothing has become an attractive cornerstone for the development of therapeutic textiles able to alleviate skin disorders, namely those correlated to microbiota dysregulation. Skin microbiota imbalance is known in several skin diseases, including atopic dermatitis (AD), psoriasis, seborrheic dermatitis, rosacea, acne and hidradenitis suppurative (HS). Such microbiota dysregulation is usually correlated with inflammation, discomfort and pruritus. Although conventional treatments, that is, the administration of steroids and antibiotics, have shown some efficacy in treating and alleviating these symptoms, there are still disadvantages that need to be overcome. These include their long-term usage with side effects negatively impacting resident microbiota members, antibiotic resistance and the elevated rate of recurrence. Remarkably, therapeutic textiles as a non-pharmacological measure have emerged as a promising strategy to treat, alleviate the symptoms and control the severity of many skin diseases. This systematic review showcases for the first time the effects of therapeutic textiles on patients with skin dysbiosis, focusing on efficacy, safety, adverse effects and antimicrobial, antioxidant and anti-inflammatory properties. The main inclusion criteria were clinical trials performed in patients with skin dysbiosis who received treatment involving the use of therapeutic textiles. Although there are promising outcomes regarding clinical parameters, safety and adverse effects, there is still a lack of information about the impact of therapeutic textiles on the skin microbiota of such patients. Intensive investigation and corroboration with clinical trials are needed to strengthen, define and drive the real benefit and the ideal biomedical application of therapeutic textiles.


Assuntos
Dermatite Atópica , Disbiose , Humanos , Pele , Têxteis , Dermatite Atópica/tratamento farmacológico , Prurido/terapia , Alérgenos
7.
Sci Prog ; 107(2): 368504241242282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614468

RESUMO

This research aims to optimize the silk and wool dyeing process using natural dyes from Bixa orellana (annatto) through response surface methodology. Central composite design experiments highlight the significant enhancement of color outcomes achieved through microwave treatment. For silk, the optimal conditions (80 °C for 40 min) with annatto extract yield a color strength (K/S) of 17.8588, while wool achieves a K/S of 7.5329. Introducing eco-friendly bio-mordants, such as pomegranate peel and red sumac tannins, enhances color strength. Pre-dyeing treatments with 2% red sumac, 1.5% pomegranate peel, and weld flower extracts for silk produce high color strength, with K/S values of 16.4063, 16.3784, and 12.1658, respectively. Post-dyeing, the K/S values increase to 40.1178, 17.4779, and 21.6494. Wool yarn exhibits similar improvements, with pre-dyeing K/S values of 13.1353, 13.5060, and 16.3232, escalating to 10.5892, 15.3141, and 23.4850 post-dyeing. Furthermore, this research underscores improved colorfastness properties, including notable enhancements in light, wash, and rubbing fastness for both silk fabric and wool yarn. These findings underscore the efficacy of the proposed sustainable dyeing methods, offering valuable insights for eco-friendly textile production.


Assuntos
Carotenoides , Árvores , , Animais , Bixaceae , Têxteis , Sementes , Seda
8.
Sci Rep ; 14(1): 8530, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609489

RESUMO

Functional antibacterial textile materials are in great demand in the medical sector. In this paper, we propose a facile, eco-friendly approach to the design of antibacterial biodegradable cotton fabrics. Cotton fiber fabrics were enhanced with a chitosan coating loaded with plant extracts and essential oils. We employed Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometry, optical microscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) to characterize the color, structure, and thermal properties of the modified fabrics. The fabrics were found to effectively induce growth inhibition of Gram-positive and Gram-negative bacteria, especially when a synergic system of aloe vera extract and cinnamon essential oil was applied in the coating formulation. Additionally, we observed significant color and weight changes after 5, 10, and 20 days in soil biodegradability tests. Given the straightforward modification process and the use of non-toxic natural materials, these innovative bio-based and biodegradable cotton fabrics show great promise as protective antimicrobial textiles for healthcare applications.


Assuntos
Quitosana , Extratos Vegetais , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Têxteis , Microscopia Eletrônica de Varredura
9.
Nat Commun ; 15(1): 3289, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632231

RESUMO

Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.


Assuntos
Fibroínas , Seda , Humanos , Seda/química , Têxteis , Condutividade Elétrica , Fibroínas/química , Tato
10.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611727

RESUMO

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Assuntos
Anti-Infecciosos , Nanopartículas , Prata/farmacologia , Gossypium , Têxteis , Anti-Infecciosos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologia
11.
Sci Rep ; 14(1): 8045, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580674

RESUMO

Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/química , Fibra de Algodão , Ácido Succínico , Nanopartículas Metálicas/química , Têxteis , Antibacterianos/farmacologia , Antibacterianos/química
12.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38439676

RESUMO

AIMS: We aimed to develop a method to assess the virucidal performance of domestic laundry in a lab-scale washing machine (Rotawash) based on EN 17658. METHODS AND RESULTS: For method development, virus recovery was investigated after drying on cotton carriers for three test viruses murine norovirus (MNV), modified vaccinia virus Ankara (MVA), and bovine coronavirus (BCoV), followed by washing simulations in flasks and Rotawash. MNV and MVA demonstrated sufficient recovery from carriers after drying and washing (up to 40°C and 60 min). BCoV exhibited lower recovery, indicating less relevance as a test virus. Rotawash efficacy tests conducted with MNV, a resistant, non-enveloped virus, showed limited efficacy of a bleach-free detergent, aligning with results from a domestic washing machine. Rotawash washes achieved higher reductions in infectious virus titers than suspension tests, indicating the role of washing mechanics in virus removal. CONCLUSIONS: This study established a practical method to test the virucidal efficacy of laundry detergents in Rotawash, simulating domestic washing.


Assuntos
Detergentes , Norovirus , Bovinos , Animais , Camundongos , Detergentes/farmacologia , Têxteis
13.
Environ Sci Pollut Res Int ; 31(17): 25163-25181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462567

RESUMO

A novel biochar (BC), derived from spinach leaves, was utilized as an activator for persulfate (PS) in the degradation of methylene blue (MB) dye under visible light conditions. Thorough analyses were conducted to characterize the physical and chemical properties of the biochar. The (BC + light)/PS system exhibited superior MB degradation efficiency at 83.36%, surpassing the performance of (BC + light)/hydrogen peroxide and (BC + light)/peroxymonosulfate systems. The optimal conditions were ascertained through the implementation of response surface methodology. Moreover, the (BC + light)/PS system demonstrated notable degradation ratios of 90.82%, 81.88%, and 84.82% for bromothymol blue dye, paracetamol, and chlorpyrifos, respectively, under optimal conditions. The predominant reactive species responsible for MB degradation were identified as sulfate radicals. Notably, the proposed system consistently achieved high removal efficiencies of 99.02%, 96.97%, 94.94%, 92%, and 90.35% for MB in five consecutive runs. The applicability of the suggested system was further validated through its effectiveness in treating real textile wastewater, exhibiting a substantial MB removal efficiency of 98.31% and dissolved organic carbon mineralization of 87.49%.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Spinacia oleracea , Carvão Vegetal/química , Luz , Têxteis , Poluentes Químicos da Água/análise
14.
Int J Biol Macromol ; 265(Pt 2): 130983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521304

RESUMO

The development of environmentally friendly multifunctional auxiliaries for textile modification is the focus of attention in textile industry in recent years. Polydopamine is an important biological macromolecule and widely used in biomedicine, nanomaterials, material surface modification and other fields. In this study, the novel multifunctional melanin-like nanoparticles (Nha-PDA NPs) were prepared and used for antibacterial, hydrophobic, and UV protective of textiles. Nha-PDA NPs were prepared with dopamine (DA) and n-hexylamine (Nha) by simple autoxidation copolymerization. Nha-PDA NPs were bound to the fabric surface through the PDA structure in Nha-PDA NPs that has been widely confirmed to have strong adhesion on the surface of many materials. The modified fabrics, Nha-PDA NPs@Cotton, had good hydrophobic, antibacterial and UV protective properties. The static water contact angles of the modified fabrics could reach 120°. The antibacterial rates of Nha-PDA NPs@Cotton against E. coli and S. aureus were above 85 %. The maximum UPF value of the modified cotton was 362, indicating that the ultraviolet protection performance was excellent. The fabric modified with multifunctional melanin-like nanoparticle provides a green way for the multifunctional modification of textiles.


Assuntos
Escherichia coli , Indóis , Melaninas , Polímeros , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Têxteis , Gossypium
15.
Int J Biol Macromol ; 264(Pt 2): 130779, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471604

RESUMO

Regenerated cellulose fibers has attracted increasing attention for high-grade textile raw materials and industrial textiles, but the low mechanical property caused by differences in regenerated raw materials and production levels limits its commercial application in the product diversity. Herein, we proposed a novel triple-crosslinking strategy by coupling with hydrogen bonds, chemical crosslinking, and internal mineralization from multiple pulsed vapor phase infiltration (MPI) to improve the mechanical performance of regenerated cellulose fibers. A binary solvent composed of ionic liquid (IL) and dimethyl sulfoxide (DMSO) is used to dissolve waste cotton textile and then wet spinning. Dual-crosslinking is firstly achieved by coupling glutaraldehyde (GA) and cellulose reaction. Subsequently, a metal oxide is intentionally infiltrated into inner cellulosic through MPI technology to form a third form of crosslinking, accompanied by the ultra-thin metal oxide nano-layer onto the surface of regenerated cellulose fibers. Results showed that the triple-crosslinking strategy has increased the tensile stress of the fiber by 43.57 % to 287.03 MPa. In all, triple-crosslinking strategy provides a theoretical basis and technical approach for the reinforcement of weak fibers in waste cotton recycling, which is expected to accelerate the development of the waste textile recycling industry and promote of the added-value of regenerated products.


Assuntos
Fibra de Algodão , Têxteis , Celulose/química , Óxidos
16.
Ambix ; 71(1): 35-72, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38426270

RESUMO

Mediaeval Arabic technical literature shows a keen interest in yellow dyes, paints, varnishes, inks, and even perfumes. Recipes reveal that yellow was viewed as just one step away from gold, with preparations for these two colours often sharing ingredients and techniques. In the unfolding of procedures and applications to different materials, from skin to textiles, Arabic sources also offer a glimpse into daily life and shared tastes, presenting luxury objects along with their imitations. This paper traces the role played by yellow and gold in inks, cosmetic dyes, and coloured, scented fabrics, exploring the textual dimension of these recipes, their technical features, and their social role between the court and the street. It also presents translations of several important recipes for yellow and gold dyes, which illustrate their diversity of applications, while also addressing such material problems as durability and substitution.


Assuntos
Cosméticos , Têxteis , Animais , Cavalos , Corantes , Pele , Vestuário
17.
Nature ; 628(8006): 84-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538792

RESUMO

Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Pele , Têxteis , Eletrodos
18.
Sci Rep ; 14(1): 7310, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538710

RESUMO

This paper presents active analgesic and anti-inflammatory dressings based on cotton woven material with surface functionalization enabling drug implementation. For this purpose, lactide was polymerized on the surface of cotton textiles to achieve better compatibility with hydrophobic drug and polylactide (PLA)-based macromolecules. Subsequently, ibuprofen-loaded PLA and PLA-PEG were implemented through the exhausting method. Such material was tested for cytotoxicity (toward L929 mouse fibroblasts) and anti-inflammatory activity (towards human Hs68 fibroblasts) based on the secretion of pro-inflammatory cytokines IL-1ß and TNF-α. The results showed that the drug attachment and its performance are influenced by a combination of mercerization, bleaching and polylactide grafting, and the release of ibuprofen depends on the drug-loaded layer structure. Moreover, we show that cotton woven fabric with ibuprofen-loaded PLA and PLA-PEG cover layers had anti-inflammatory properties. These new dressings may open possibilities for developing prolonged analgesic and anti-inflammatory materials for wound healing or transdermal drug delivery.


Assuntos
Anti-Inflamatórios , Ibuprofeno , Camundongos , Animais , Humanos , Ibuprofeno/farmacologia , Ibuprofeno/química , Anti-Inflamatórios/farmacologia , Poliésteres/química , Têxteis , Analgésicos
19.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542846

RESUMO

In the quest to curtail the spread of healthcare-associated infections, this work showcases the fabrication of a cutting-edge antibacterial textile coating armoured with aggregation-induced emission photosensitisers (AIE PS) to prevent bacterial colonisation on textiles. The adopted methodology includes a multi-step process using plasma polymerisation and subsequent integration of AIE PS on their surface. The antibacterial effectiveness of the coating was tested against Pseudomonas aeruginosa and Staphylococcus aureus after light irradiation for 1 h. Furthermore, antibacterial mechanistic studies revealed their ability to generate reactive oxygen species that can damage bacterial cell membrane integrity. The results of this investigation can be used to develop ground-breaking explanations for infection deterrence, principally in situations where hospital fabrics play a critical part in the transmission of diseases. The antibacterial coating for textiles developed in this study holds great promise as an efficient strategy to promote public health and reduce the danger of bacterial diseases through regular contact with fabrics.


Assuntos
Infecção Hospitalar , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus , Têxteis , Atenção à Saúde
20.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542857

RESUMO

To produce functional protective textiles with minimal environmental footprints, we developed durable superhydrophobic antimicrobial textiles. These textiles are characterized by a micro-pleated structure on polyester fiber surfaces, achieved through a novel plasma impregnation crosslinking process. This process involved the use of water as the dispersion medium, water-soluble nanosilver monomers for antimicrobial efficacy, fluorine-free polydimethylsiloxane (PDMS) for hydrophobicity, and polyester (PET) fabric as the base material. The altered surface properties of these fabrics were extensively analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS), thermogravimetric analysis (TGA), and water contact angle (WCA) measurements. The antimicrobial performance of the strains was evaluated using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. After treatment, the fabrics exhibited enhanced hydrophobic and antimicrobial properties, which was attributed to the presence of a micro-pleated structure and nanosilver. The modified textiles demonstrated a static WCA of approximately 154° and an impressive 99.99% inhibition rate against both test microbes. Notably, the WCA remained above 140° even after 500 washing cycles or 3000 friction cycles.


Assuntos
Anti-Infecciosos , Poliésteres , Prata , Poliésteres/química , Têxteis , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...